VITAL SIGN INTEGRATION ON MED/SURG UNITS

Challenges, Successes and Unintended Consequences

Lola Rust
Tanna Nelson
CONFLICT OF INTEREST DISCLOSURE

Lola Rust and Tanna Nelson have no real or apparent conflicts of interest to disclose.
LEARNING OBJECTIVES

- Understand the vendor selection process and guiding operational decisions.
- Learn how THR managed the Vital Signs Integration project and implementation strategies
- Recognize the value added through time savings and data accuracy
- Realize unintended consequence
To provide vital sign integration using mobile noninvasive devices to

- Support the Reliable Care Blue printing practice of obtaining vital signs every 4 hours for low-acuity adult inpatient areas, such as Med Surg and Telemetry.
- Improve nursing efficiency and accuracy (avoid transcription errors)
- Improve near real time documentation of vital signs, to support early detection of sepsis and other conditions leading to patient deterioration.

Vital Signs
- Vital Signs will standardize across the system to meet best practice standards
- Vital signs will be taken at the following minimum frequency unless directed otherwise by physician order, service line policy or as patient condition indicates
 - ED – on admission and within 1 hour of discharge/transition
 - Inpatient – Every 4 hours
 - ICU – Every hour (exception is temp every 4 hours)
- A full set of vital signs include heart rate, blood pressure, respiratory rate, pulse oximetry, and temperature with route taken
- Vital signs will show as incomplete if:
 - The 5 Vital Signs are documented at different times
 - Nurses will monitor vital sign trends
ALIGNMENT TO SYSTEM STRATEGY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Extend our culture across the care continuum and into the community</td>
<td>Innovate and expand our Care delivery to reliably deliver compelling value (quality, cost, and service)</td>
<td>Generate the financial capacity to fund our transformation</td>
</tr>
<tr>
<td>- Provides enhanced patient safety, supporting our Mission and vision.</td>
<td>- Reduces cost through decreased documentation errors.</td>
<td>- Provides higher value and lower clinical documentation</td>
</tr>
<tr>
<td>- This continued integration demonstrates</td>
<td>- Increases staff productivity through reduction of device wait times</td>
<td>- Provides a platform to expand growth potential with vital sign and other device integration</td>
</tr>
<tr>
<td>- our commitment to innovation to improve patient safety</td>
<td>- Increases compliance to timely and accurate documentation of vital signs and hourly rounding</td>
<td>- Provides standardization of device hardware, software and licenses for the system.</td>
</tr>
<tr>
<td>- advancing quality of care</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definitions - Vital Sign Integration High Acuity

- Integration in intensive care units, emergency department, PACU and procedural areas where the nurse is responsible for obtaining, monitoring and documenting vital signs.
- Values include hemodynamic parameters which populate to the clinical flow sheet rows every one minute.
- Authentication of clinical data occurs in the EMR flow sheet row at a time and interval based on organizational and clinical area policy.
- Monitors are hardwired.
- Device is attached to patient record via device selection within the EMR.
DEFINITIONS-
VITAL SIGN INTEGRATION LOW ACUITY

- Integration in non-critical care or procedural areas
- Collected vital sign values include B/P, heart rate, respiratory rate, temperature and SpO2
- Include vital sign modifiers
 - Location
 - Source
 - Device
- Includes other documentation options
 - I&O,
 - weight,
 - safety and purposeful rounding
- Devices connect via a wireless network
- Device is attached to patient record via ADT feed
- Values are authenticated at the time values are “SENT” to the EMR
JOURNEY TO VITAL SIGN DEVICE INTEGRATION

2010 Anesthesia

2013 - 2014 Physiologic in Critical Care

April 2016 RCB Vital Sign module implemented

September 2016 Low Acuity Device selection

December 2016 – September 2017 Discovery and Analysis

September 2017 Revised Device selection

October 2017 system funding approved, Project Kick off

January - June 2018 Phase I Low Acuity Implementation

July 2018 Phase II Low Acuity Implementation
PROJECT PLAN/

- Discovery & Analysis
- Design, Build & Test
- Train
- Implement
- Sustain

This Photo by Unknown Author is licensed under CC BY-NC-ND
We can integrate your vital signs right into your EHR

No Problem! Easy as pie!

I don’t believe it for a second.

Really?

What’s integration?

Humm?

WOW! All in!
<table>
<thead>
<tr>
<th>Device Selection</th>
<th>Infrastructure Requirements</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Option 2 vendors</td>
<td>• ADT Interfaces</td>
<td>• Financial</td>
</tr>
<tr>
<td>• Based on existing Architecture</td>
<td>• Network</td>
<td>• Integration costs</td>
</tr>
<tr>
<td>• Both had limiting factors</td>
<td>• Drivers if needed</td>
<td>• Supported by system or individual entity</td>
</tr>
<tr>
<td>• Price point</td>
<td>• License and implementation costs</td>
<td>• Hardware</td>
</tr>
<tr>
<td>• Interface, network and licensing requirements</td>
<td>• User access security: active directory</td>
<td>• End of Life (EOL) status</td>
</tr>
<tr>
<td>• Compatibility with existing vital sign machines</td>
<td></td>
<td>• Device Software Compatibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allocation of purchased devices: limited supply</td>
</tr>
</tbody>
</table>
INFRASTRUCTURE

Physiologic Monitoring
2010 - 2014

Low Acuity VS Integration
Phase I

Low Acuity Vital Sign Integration
Phase II
COMPATIBLE DEVICES

- Phase I Neuron Capsule compatible with 7 Brands of vital sign machines.

- THR Inventory of Low Acuity
 - > 8 brands and models
 - Devices = > 1,271

Impacts to decision
- End of life status
- Additional software costs and licenses too accommodate an add on configuration
System Discovery and Analysis Success

Device Selection
- Vendor choice supports strategic plan to accommodate existing device hardware and build on the device architecture.
- Price point
- Supports the end user experience
- Building block approach
- Established system standard for Vital Sign Machines*

Infrastructure Requirements
- No change to current architecture
- Uses existing network
- License and implementation costs reduced
- Established system standard for Vital Sign Machines *

Implementation
- Financial
 - Initial hardware, licensing and implementation costs covered by system budget
 - Future costs individual entity responsibility
- Provided a phased approach
 - Upgrading existing VS hardware with neuron
 - All in one implementation
 - Includes single sign on option
PROJECT TEAM

- Executive Sponsor
- Business Owner
- Project Managers
- Team
SCOPE

Phase I
- Wholly owned + 1 Joint Venture Partner (JVP)
- Implementation and device costs covered by ITS
- 166 devices allocated to 13 entities
- Acute Med/Surg Inpatient Units
- Single VS brand and model
- Managed by PM

Phase II
- All in one device, system standard
- Implementation costs covered by system
- Hardware and License costs by entity
- All clinical areas on wireless network except Critical Care/Procedural areas
- Coordinated by HTM and Nursing Informatics
DESIGN

Phase I

System standard: Neuron affixed to 1 brand and model VS machine

Design team comprised of RN, PCT, analysts from clinical documentation, QA, data exchange and vendor

General and relative to med/surg clinical areas

Utilized mobile documentation application as foundation

Includes B/P, HR, SpO2, RR and Temp with up to 5 modifiers

5 clinical documentation fields

Single instance of vital sign and other documentation messages sent

Phase II

System standard: All in one device

Used foundation created in Phase I

General and relative any clinical area except ICU and procedural areas

Incorporated optimization requests from Phase I, modified phase I design

Includes B/P, HR, SpO2, RR and Temp with up to 7 modifiers

7 clinical documentation fields

Supports interval vital sign

Individual or groups of vital signs and other documentation messages can be sent
BUILD/TEST

Build

- Devices
 - Biomed
- Documentation (HL7)
 - Data Exchange/Management
 - Clinical Documentation
- Servers: 5
 - 2 production,
 - 1 test/train
 - Individual server each for joint venture (2)

Testing

- Connectivity
- Active Directory
 - Wholly owned
 - Joint Venture
- Admission Discharge Transfer (ADT)
 - Invision
 - CPSI
 - CC1
- Medical Device integration: results to EMR
- User acceptance: validation of workflow
TESTING

Phase II testing Included

- All components of Phase I
- Negative testing
- Interval testing

You thought what we tested in Phase I was enough!?

Make No Assumptions!!!
TRAIN

Vendor training
- System administration 1 day
- Train the trainer
 - Biomed: device assembly and maintenance 1.5 days
 - Nursing: 3 – 4 hours
- Super User Training
 - Biomed: half a day
 - Nursing: 3 – 4 hours
 - Basic Assembly
 - Functionality
 - Care and Maintenance
 - Trouble shooting
- End User Training
 - User access validation at the elbow
 - Basic functionality
 - At the elbow go live support by super users
IMPLEMENTATION: GO LIVE

Readiness Check list

- Change Management reviewed and approved
- Device assembly validation: Biomed
- Infrastructure validated: Network, driver configurations and servers

- Support
 - Onsite
 - Remote
 - Super Users

- Activate Production
SUSTAINMENT

Requests

- Change management Process

Customer Service

- Service Desk
- Knowledge Articles
 - User Access
 - Ticket routing
 - Downtime

Infrastruc

- Server Updates
- New or changing applications
- Downtime

Device Mgt.

- Preventive and Quality Maintenance
- Medical Component Management
- Cable management

Education

- New employee Competence/Mastery validation Updates

Strategic Goals

- Preventive and Quality Maintenance
- Medical Component Management
- Cable management

Sustain
OUTCOME EVALUATION STRATEGY

- **Cost Savings**
 - Time Savings
 - Time Study
 - Staff resources
 - Data Accuracy
 - Frequency of Corrections
 - Reason for Corrections
 - Patient Safety
 - Timely Entry
 - Staff Satisfaction
 - Pre/Post perception
 - Documentation Burden

- **Vital Signs Integration**
REQUIRED DOCUMENTATION CONSIDERATIONS

Primary Focus

Vital Signs (Every 4 Hours)
- Blood Pressure
- Heart Rate
- Respirations
- Temperature
- Temp Source
- SPO2

Secondary Focus

Additional Flowsheet Rows
- Rounding (every 1 hour)
- Upon Occurrence
 - General activity
 - Oral intake
 - Intake %
 - Urine output
 - Orthostatic position
 - SPO2 monitoring
DATA FLOW

- No Vital Signs
- Heart Rate
- Blood Pressure
- Temperature
- Respirations
- SPO2
- Temp Source
- SPO2 Measure Method
- Orthostatic Position
- General Activity
- Rounding
- Urine Output
- Oral Intake
- Meal %
- No Additional Documentation

Vital Signs

Additional Documentation
RETROSPECTIVE ANALYSIS: VITAL SIGNS

75 nursing units evaluated individually:

- Historical baseline – Manually documented vital signs (n= 9,535,894): July – December 2017
- After implementation – Manually documented and device integrated vital signs (n= 11,253,351)
 - Time varies based on go-live (see timeline)
 - Began data collection 7 days after implementation

Inclusion:
- Patients assigned to participating Med/Surg and Telemetry units
- Documented during the time the patient was assigned to the unit
- Documented by RNs, PCTs, Unit Clerks

Exclusion:
- Integrated through other means (GE monitors, surgery, ED)
- Rows without a vital sign value recorded (comment only documentation)
- Documented by other disciplines not assigned to a specific nursing unit (RT, PT, OT)
GO-LIVE TIMELINE AND DATA ACQUISITION DATES

Jan 10: THAL
Jan 17: THDN
Jan 22: THHEB
Jan 23: THAZ
Jan 16: THP
Jan 31: THSH
Jan 31: THFW
Feb 20: THK
Feb 19: THD
Feb 14: THAM
Feb 13: THS
Feb 12: THA
Mar 27: THFM
Mar 28: THC
Apr 17: TSHW/CF
Sep 6: THRW

2018:
- Jan 17 - Sep 30: 182 days
- Jan 24 - Sep 30: 178 days
- Feb 1 - Sep 30: 172 days
- Feb 7 - Sep 30: 168 days
- Feb 19 - Sep 30: 160 days
- Feb 26 - Sep 30: 155 days
- Apr 3 - Sep 30: 129 days
- Apr 24 - Sep 30: 114 days
- Sep 6 - Sep 30: 17 days
INTEGRATION OF VITAL SIGNS: OVERVIEW

Overall Integration

60.3%
BOX AND WHISKER OVERVIEW

- **Outliers**
- **Min/Max**
- **75th Percentile**
- **Median**
- **Mean**
- **25th Percentile**

Shows a lot of information in a small space

Easy comparison between manual vs. integrated documentation
Welch's two-tailed independent t-test

Pre (M = 67.125, SD = 16.254)
Post (M = 85.459, SD = 5.752)
\[t_{92} = 9.2083 \quad p < 0.0001, \quad CI_{95} = 22.288 \text{ to } -14.379 \]

Pre (M = 17.871, SD = 5.802)
Post (M = 7.840, SD = 3.321)
\[t_{117} = 12.9933 \quad p < 0.0001, \quad CI_{95} = 8.502 \text{ to } 11.560 \]

Pre (M = 12.869, SD = 10.672)
Post (M = 5.177, SD = 2.589)
\[t_{82} = 6.0661 \quad p < 0.0001, \quad CI_{95} = 5.169 \text{ to } 10.215 \]

Pre (M = 2.143, SD = 1.961)
Post (M = 1.509, SD = 1.136)
\[t_{118} = 2.4204 \quad p = 0.0170, \quad CI_{95} = 0.115 \text{ to } 1.151 \]
DATA ACCURACY

Frequency of Data Correction
Reasons for Data Correction
CONSIDERATIONS FOR DATA CORRECTIONS

Average: 1 minute to correct data

Scenario 1
Recognition of Another’s Error
1. Identify the issue
2. Contact the original documenter
3. Clarify VS value
4. Original documenter:
 1. logs in to EHR
 2. opens patient chart
 3. goes to correct flowsheet and time column
 4. enters corrected values

Scenario 2
Recognition of Self Error
1. Identify the issue
2. Clarify VS value
3. Enter corrected values

Assumptions: Original documenter is in close proximity at time of discovery and vital signs information is also nearby.

Assumptions: Individual is at a workstation, logged in to EHR system, and vital signs information is nearby.
DATA CORRECTION: MANUAL VS INTEGRATED

Statistically significant decrease in data correction

pre-implementation (n=75) (M=0.7320, SD =0.2343)
post-implementation (n=75) (M=0.3440, SD =0.4221)

$T_{(115)} = 6.9600, p < 0.0001, CI_{95} 0.2776$ to 0.4984

Note: Welch's independent two-tailed t-test
DATA CORRECTION: MANUAL VS INTEGRATED

Manual Documentation

7.3 corrections per 1,000 entries

Device Integration

3.6 corrections per 1,000 entries

50.7% decrease in data correction
Examination of Comments Associated with Data Correction: Why Was the Correction Made?

<table>
<thead>
<tr>
<th>Category</th>
<th>Finding</th>
<th>Why is this important?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong Patient</td>
<td>Significant</td>
<td>Integration and the use of barcode scanning helps significantly with documentation on the correct patient</td>
</tr>
<tr>
<td>Manual (n=75)</td>
<td>(M=0.075283, SD =0.168792)</td>
<td></td>
</tr>
<tr>
<td>Device Integration (n=75)</td>
<td>(M=0.000000, SD =0.000000)</td>
<td></td>
</tr>
<tr>
<td>(T_{(74)}= 3.8626, p = 0.0002, CI.95 0.036447 to 0.114118)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error in Entry</td>
<td>Non-Significant</td>
<td>More study of the use of “Error” is needed</td>
</tr>
<tr>
<td>Manual (n=75)</td>
<td>(M=0.095929, SD =0.173518)</td>
<td></td>
</tr>
<tr>
<td>Device Integration (n=75)</td>
<td>(M=0.106221, SD =0.250473)</td>
<td></td>
</tr>
<tr>
<td>(T_{(131)}= 0.2925, p = 0.7704, CI.95 -0.079895 to 0.059311)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recheck</td>
<td>Non-Significant</td>
<td>Integration does not significantly decrease the use of comments to clarify reasons for data correction</td>
</tr>
<tr>
<td>Manual (n=75)</td>
<td>(M=0.154647, SD =0.203744)</td>
<td></td>
</tr>
<tr>
<td>Device Integration (n=75)</td>
<td>(M=0.185593, SD =0.304861)</td>
<td></td>
</tr>
<tr>
<td>(T_{(129)}= 0.7309, p = 0.4662, CI.95 -0.114718 to 0.052824)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notified</td>
<td>Non-Significant</td>
<td>Integration does not significantly decrease the use of comments to explain next steps if needed.</td>
</tr>
<tr>
<td>Manual (n=75)</td>
<td>(M=0.305951, SD =0.254203)</td>
<td></td>
</tr>
<tr>
<td>Device Integration (n=75)</td>
<td>(M=0.327423, SD =0.394107)</td>
<td></td>
</tr>
<tr>
<td>(T_{(126)}= 0.3965, p = 0.6924, CI.95 -0.128639 to 0.085695)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Welch’s independent two-tailed t-test
TIME SAVINGS

Time Study
Staff resources
INFORMAL TIME STUDY

Convenience Sample

2 Hospitals
5 Nursing Units
8 Users (6 PCTs, 2 Nurses)
63 total observations

Limitations

- Time study done at the end of project implementation
- Two of the eight users were observed doing both manual documentation and device integration
Overall Results:
Observations (n=63)
Statistically significant difference in time to obtain vital signs and document
Manual Doc. (n=32) (M=4.3537, SD =1.1049)
Integration (n=31) (M=2.4671, SD =0.6701)

\[T_{(51)} = 8.2236, \ p <0.0001, \ CI_{95} 1.4261 \text{ to } 2.3472 \]

Time savings of 1.89 minutes per episode obtaining routine vital signs

Individual Results:
User A: time savings of 2.0 minutes
User B: time savings of 1.87 minutes
STAFF SATISFACTION

Pre/Post perception
Documentation Burden
COST SAVINGS

Patient Safety
Data Accuracy
Time Savings
Staff Satisfaction
COST & TIME SAVINGS: ROUTINE VITAL SIGNS

A 25 bed unit obtaining Vital Signs every 4 hours saves 1.89 minutes per “episode”

4.73 hours savings per day with Vital Signs Integration

1,725 hours of savings per year per nursing unit
COST & TIME SAVINGS: DATA ACCURACY

Average Med/Surg or Tele nursing unit takes 254,291 vital signs annually.

50.7% decrease in data correction equates to 0.4 hours savings daily.

146 hours saved annually per nursing unit.
LESSONS LEARNED

- Don’t make a device decision based on probability
- Device integration expanding rapidly
 - Options change faster than infrastructure capabilities
 - Costs change as vendor implementations increase
- Complete an inventory of assets and life span before analysis
- Modifications to build should not be based on “low use”
- Critical need for biomed on-site presence at go live
UNINTENDED CONSEQUENCES

- Identified competency and mastery of tasks
 - Competence
 - “The ability to observe and gather information, recognize deviations from expected patterns, prioritize data, make sense of data, maintain a professional, response demeanor, provide clear communication, execute effective interventions, perform nursing skills correctly, evaluate nursing interventions, and self reflect for performance improvement within a culture of safety.”
 - Mastery
 - Attained through deliberate practice
 - “Effortful activities designed to optimize improvement
 - Lost due to inconsistent teaching, testing, retention and skill drift
 - Diminishes without routine validation
REFERENCES

Texas Board of Nursing. (2011). Differentiated essential competencies of Texas nursing programs.
QUESTIONS

LolaRust@texashealth.org

TannaNelson@texashealth.org